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Hadron Fields from Anisotropic Space and 
Their Interaction 
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Hadron fields are constructed from constituent fields in the anisotropic micro- 
domain, regarded as Finslerian, which were discussed in an earlier paper. The 
general one-particle hadron states are formulated. The many-particle hadron 
states are also formed as direct products of one-particle states. Then the field 
theory of hadrons in the macrodomain is discussed and formal calculations are 
made for the reaction amplitude of the meson-baryon interaction and compared 
with that of our previous model. It is found that the amplitude is dependent on 
that of the ~r~r interaction together with a factor arising from the "rearrangement" 
of the constituents. This factor provides an extra momentum dependence that 
leads to the "energy-dependent coupling" which makes it possible to apply 
perturbation technique in strong interactions, as discussed in our earlier papers. 

1. I N T R O D U C T I O N  

In a recent  paper  (De, 1985), physical  fields in microspace,  regarded 

as Fins ler ian ,  are constructed.  There, the " h a n d e d n e s s "  necessary in the 
structure of the subnuc lea r  particles for the space- t ime formula t ion  of the 

in terna l  symmetry  is connec ted  with the extension of the particle in the 
mic rodomain .  The field equat ions  for these physical  fields as well as the 
cor responding  equat ions  for the macrodomain ,  the Minkowsk ian  space, are 

derived with the in t roduc t ion  of a k ind of "averaging."  

It is p roposed  there that  the physical  field func t ion  $(x,  v) is dependen t  
on  the l ine suppor t  e lement  (x, v) of the Fins ler  space with the metric 

gv(x, v) and  the connec t ion  coefficients p~(x ,  ~) depend ing  not  only on  the 
posi t ion  coordinates  x = (x ~ x 1, x 2, x3), bu t  also on some direct ional  vari- 
able v = ( u ~ v 1, u 2, v3). In  this model  the extens ion of the subnuc lear  particle 
is of  composi te  type and  the const i tuents  are si tuated at ne ighbor ing  points  
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of the microdomain, less than 1 0  -13  c m  apart. In fact, it is proposed there 
that the constituents lie on some spacelike surface in the space of coordinates 
x~'(/z =0,  1, 2, 3), the underlying manifold, which is essentially Minkow- 
skian. Furthermore, the extension in the microdomain is such that the 
constituents must be on a geodesic in that space (the Finsler space), and 
thus "every unit field orthogonal to this geodesic is parallel along it" 
(Chowdhuri, 1981). In fact, this curve is the autoparallet curve whose tangent 
vectors result from each other by successive infinitesimal parallel displace- 
ment of the type [using the notations of Rund (1959)] 

d~,i= -p~j(x,  ~,)v h dx j (1) 

The neighboring points on the autoparallel curve where the constituent 
particles lie (or the corresponding fields depend) are x ~, x " +  dx  ~, x " -  

d x " , . . . ,  and the (distance) element d x "  is quantized by setting 

dx ~ = i e h y "  (2) 

with e a real, positive parameter, which may vary from 0 to l, the fundamental 
length, of the order of 10 -13 cm, and T" (/z = 0, 1, 2, 3) the Dirac matrices. 

From an assumed fundamental property of the field functions of the 
constituents or particles, which is the physical equivalence of the field 
functions (or wave functions) at neighboring points on the autoparallel 
curve, it is possible to deduce an equation for the microfield of the form 

ihy~(Ou - G~O~)tp(x, p) = 0 (3) 

with 

p ~ ( x ,  ~')u h = G~ (4) 

Also, it is shown that an "averaging" over the microdomain can yield the 
usual Dirac equation for the field in the macrodomain. 

In the present paper this formalism is extended for the construction 
of hadron fields from the constituent fields in Finsler space. Also, the 
interactions among these hadron fields in the macrodomain are formulated. 
In Section 2, the particle space formed of the particle states is constructed, 
and in Section 3, the interactions of hadrons are discussed. Finally, in 
Section 4, the amplitudes for these reactions are formally calculated and 
compared with the amplitude of our previous model (Bandyopadhyay and 
De, 1975a; De, 1983), which satisfies the requirements of the S-matrix 
theory, such as analyticity, unitarity, and crossing. Also, the field theory is 
applicable there because the "energy-dependent coupling" leads to the 
perturbation technique being applicable to the strong interactions. Thus, 
the basis of the previous model is deepened, in addition to the establishment 
of the theory of the basic structure of hadrons. 
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2. THE PARTICLE SPACE 

We now construct the field functions (or wave functions) of the hadrons 
from those of the constituents, which are spinors (or may be Majorana 
spinors). As has already been stated, the fields of these constituents are 
functions of the line support elements in the Finsler space, the microdomain. 
We first consider the particle states only for mesons, the subset of the whole 
hadron states. Of course, the generalization to the whole hadron state will 
be straightforward. The pions (pseudoscalar and vector) are formed by the 
two constituents from the leptons/x +, /z- ,  v~ (Bandyopadhyay, 1984) and 
thus the wave (or field) functions of the pions must be functions of the two 
neighboring line support elements on the autoparallel curve of the micro- 
space, their coordinates x ~ being on the spacelike surface of the underlying 
manifold (the Minkowskian x"  space). The quantized distance dx" given 
by (2) satisfies 

dx" dx. = (dx) 2= i2e2h2y"7. = -4e2h2<  0 

Now we form the one-particle pion state as follows: 

]O(p)) = f e ip x dn x dav de 

X I~)AB(X , ~1, ~2) Iff(--)A( x, ~1) ~](--)B ( x, ~2)[ O) (5) 

where ~(-)A and ~(-)n are, respectively, the creation operators for the 
particle (the lepton) and its charge conjugate, the creation operator for the 
antiparticle. The destruction operators for the particle and antiparticle are, 
respectively, tp (+)a and tp (+)B. The sub- and superscripts A and B are (a, a) 
and (/3, b), respectively, where a,/3 correspond to spin (Dirac) indices of 
the lepton constituents and a, b the orbital angular momenta of the con- 
stituents (Bandyopadhyay, 1984). The field operators ~(-)a and 0(-)~ are 
functions of the line support elements (x"-�89 v " - l d v " )  and ( x " +  
�89 v~+�89 respectively. In expression (5) the following notations 
have been used: 

~(-)A(x/~--�89 1 2 " - � 8 9  

= ~J(--)A(x" -�89 3:"-�89 
[ff(--)A(x", --E, IJ" --�89 

= 0(-)A(x", ~:~) (6) 

O(-)~(x" +�89 ~," +�89 

= 4,(-)~(x" +�89 v ~ +�89 

= O(-)"(x ", ~:~) (7) 
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with 

~ = (+e, v ~ +�89 ~) (8) 

C = (0,  : )  

Note that the normalization factor in (5) has been absorbed into the "inner" 
amplitude function GAB(X, ~ ,  ~2) that has been introduced for construction 
of the one-particle (pion) state from its constituents. For the general one- 
particle hadron state we can easily generalize expression (5) by summing 
over the one-particle states of different hadrons; that is, 

�9 . (k+n)AlA2 AkBk+l . . . . . .  Uk+ n 

• 47 - )a~(x ,  r �9 �9 �9 47-)A~(x,  ~k) 

x 6(-)B~+l(X, s~k+a) �9 �9 �9 ~(-)s~+-(x, ~k+,)]0) (9) 

Here, i, which may be an abstract index or can indicate the quantum 
numbers, characterizes the hadron; k and n indicate the numbers of the 
constituent particles or antiparticles, respectively, and are dependent on 
the particular hadron or the index i. 

Now the one-particle state (5) can be written as 

Io(p))= f e'P~ d4xdavde ~aB(x, e, v)O(-)A(x, v)q,(-)B(x, v)[0) (10) 

where we have used equations (3) and (4) satisfied by the operators f ( - ) a  
and O ~-)B and 

GA~(X, ~,  ~) 

=-GA.(x", ~, ~," - �89 ,," + l d : )  

( ieh i e h .  .) 
= G a s  x '~, e, u" +--j--p~(x, v)vh3/, v '~ -----f-phi(X, U)~'hT J 

~-- ~)AB(X, E, P) (11) 

Writing l~, s~ and 12, s2 for the orbital and spin angular momenta for the 
two constituents of the pion, one of which, say the first being the "central" 
particle (Bandyopadhyay, 1984; Bandyopadhyay and De, 1975a), the total 
angular momentum of the second j2 = 12 + s2 gives the isospin of the pion. 
The total angular momentum J = j l  + J 2 ,  where ]1 = 11 + Sl, becomes the spin 
of the hadron (pion, in this case). As for the example, for ~- and p- , /3  = 2, 
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b = 2 (it is in the space of preferred direction u, the Finsler space),j2 = Ij2l = 1 
and (j2)3 = -1  give rise the correct isospin state of the particles. Also, we 
can have the correct spins of the pseudoscalar and vector mesons from the 
total angular momenta of  their constituents in this model (Bandyopadhyay, 
1984). The relevance of the preferred direction of the microdomain is in 
the orbital angular momenta of  the constituent particles. In fact, in this 
model, the constituents, which are the leptons and the mesonic system 
composed of a muon-ant imuon pair, move in a harmonic oscillator potential 
with orbital angular momentum �89 in such a way that the two values of 
the third component of the orbital angular momentum represent the two 
states of matter: the particle and antiparticle. Such half-orbital angular 
momentum can be acceptable in this anisotropic space, the space of prefer- 
red direction, and is relevant for determination of the internal symmetry of 
hadrons. In fact, in this theory, as pointed out earlier, the internal quantum 
numbers, such as isospin, strangeness, and baryon number, are closely 
related to the internal angular momenta of the constituents of the hadrons. 
Thus the manifestations of  the direction variable (of the microdomain) into 
the macrodomain are in these quantum numbers, such as baryon number, 
strangeness, etc., and are carried by the orbital angular momenta of the 
constituents. 

As in the previous paper (De, 1985), we decompose the field functions 
into x parts and v parts, where it has been shown that the x parts satisfy 
the Dirac equation. Thus we write 

~(-~A(x, ~) = 47-~(x)47~ 
(12) 4,(-)B(X, l,)= 4/-)~(x)~ b( ~,) 

Then we have from (10), 

[O(P)) = f 
eipX d4x d4v d e 

x ~(--)~(X)~(-)~(X)~~ ~, ~)lo) 

= f dax eiPXgy-)~(X)tO(--)t3(x)G~Ab(x, /)]0) (13) 
d 

where 

ab f O ;  GAB(X, 1)= dE d4p~a(P)~llb(P)~)AB(X , e, ~') (14) 

Now it is to be noted that when the integrand in (14) is being "averaged," 
according to the integration therein, from the internal space to the macro- 
space, the Minkowskian space, the preferred direction is "lost" and as such 
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there is no specific ( J 1 ) 3  and ( j 2 ) 3  values or consequently no specific j3 value 
of the concerned hadron. However, as has already been mentioned, the 
direction variable of the internal space manifests itself onto the macrospace 
through the quantum numbers such as baryon number, hypercharge, and 
isospin given by the sub- and superscripts of the G-function of  (14). Also, 
the moduli of jl ,  j2 and that of j are maintained in the averaged space (the 
macrospace), where Ijl+j2] = IJl = 0  for rr-mesons and tJl = 1 for p-mesons. 

For a general one-particle hadron state, we can generalize expression 
(13) [or can obtain from (9)] as follows: 

]~(P)) =~ f d4xe ipXdY- ) '~ ( x )  " " " d Y - ) ' ~ ( x )  

x 4/-)~l '+,(x)  . . .  (p(-)~J '+"(x)O~,(x ,  l)lO ) (15) 

with 

where 

G ~ , ( x , l ) =  de d 4 v t ~ o ~ ( v ) . . . t ~ ~  

x Ob~+,(v).. �9 ~?/'+"(v) 
X & ( X ,  e ,  l . , )A i l  i i i �9 " " A g B k + l  �9 " �9 Bk+n (16) 

i i i i i 
I i =- a l ,  a 2 ,  . . . , a k ,  b k + l ,  . . . , b k + n  

(17) 
D i _ i i i i i 

= A1, A2 . . . . .  Ak, B k + l ,  . . . , B k + n  

are the super- and subscripts of the G-functions and they constitute the 
quantum numbers of the ith hadron. 

By the use of the Fourier transform we can define the one-particle 
states in the coordinate space the x space (the macrospace), and the 
corresponding hadron fields with their\usual wave function interpretation. 
We define 

I~b(x)) = ~. O(- -p2)O(po)  e-~PXlO(p))  
p.=-oo (18) 

I ~ ( P ) )  = J d4X e'pXl0(x)) 

From (13), we can say that d](-)'~(X)q'C'-)t3(x)GOAb(x, l) behaves like the 
creation part of the quantum fe ld  of the hadron concerned, which in this 
case is the meson. From a similar consideration we can find the destruction 
part of the field to be tp(+)'~(x)O(+)~(x)G~A~(X, I). Thus, we can write the 
meson field as 

dPM(X) = ~(~)(X) + qb~)(x) (19) 
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where 

, ~ ( x )  = ~+~(x)O(+~(x)G~A(x, I) 

cb~?(x) = ~ - ~ ( x ) ~ - ~ ( x ) G ~ ( x ,  I) 

Here M contains the quantum number of the hadron, arising from the sub- 
and superscripts of the 0 and G functions. The corresponding interpretation 
of the hadron wave function follows at once. These fields satisfy the 
commutation or anticommutation relations according to the spins of the 
hadrons to which they correspond. 

3. FIELD T H E O R Y  OF H A D R O N S  

Once the fields of the hadrons have been constituted, we can proceed 
to calculate the Feynman propagator functions of these fields. We calculate 
(0[ TCb,,(x)Cb~(y)lO). Here, 

qb~r(X) = {O(+)~(x)tp~+313(x)+ ~ ( - ) ' ~ ( x ) O ( - > ' ( x ) } G ~ ( x ,  l) 
(20) 

�9 *~(x) = {gT+~(x) ~/+)~(x) + ~ - ~ ' ( x ) ~ - ~ ( x ) } G ; ~ ( x ,  1) 

( 0 1 T ~ = ( x ) ~ ( y ) l O )  = (01T~(~+)~ ~-)(y)[0)+ (01TCb(~-)(x)cb~+3(y)]O) 

Using (20), we obtain 

(0l T~(x )Cb*~(y ) lO)  = - G ~ f  (x, I ' G  a .  tY, l) 

x {0(Xo- yo)S  (+)t3t3 (x  - y)S(-)'~'~(y - x )  

+ O(yo-xo)S(+)~'~(y  -x )S ( - ) t3 t3 (x  -y )}  (21) 

where S(+)(x)  and S ( - ) ( x )  are the usual anticommutator functions for the 
Dirac fields. 

Now, 

- S(+)t3~(x - y ) S ( - ~ ( y  - x )  O ( x o -  Yo) 

= i2{(yOa-  rn)r162 rn)~A(-)(y-x)}0(xo-Yo) (22) 

where A(+)(x) and A(-)(x) are the commutator functions for the Klein- 
Gordon fields and 

0 0 
701 = 7 ~ 702 = 7 ~" 

Ox ~ , Oy~ 

Now it can be proved that 

A v ( x )  + i A ( x ) O ( - x o )  = iA(+)(x) 
(23) 

div(x ) - i A ( x )  O(xo) = - iA ( - ) ( x )  
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for the Feynman propagator AF(x) of the Kle in-Gordon field. Then, using 
(23), we have from (22), 

S(+~r (24) 

Similarly, 

S ( + ) ~ ( y - x ) S ( - ) ~ ( x - y ) 0 ( y o - X o )  = S~'~(y -- x)S~v~(x-- y)O(yo-- Xo) (25) 

where SF(X) is Feynman propagator for the Dirac field. Then substituting 
(24) and (25) in (21), we obtain 

AF(X, y)------(0l TCb,,(x)dg~(y)[O)= F~Ab(x, y, l )S~(x -y )S~ '~(y  - x )  (26) 

with 

FaAb(X, y, 1) = -G~a~(x, l)G t"b" AB ~Y, l)  

Thus, the propagator of the hadron (meson) is composed of the propagators 
F AB(X , y, l) gives rise to arising from those of the constituents. The factor ~b 

the extra momentum dependence and makes the propagator convergent in 
momentum space. In fact, in momentum space, the Fourier transform of 
(26) gives 

AF(P) = ~ - ) g  ~.~b(p_pl +p2 ' l )~r d4pl d4p2 

where AF, ~.b FAB, and SF are the Fourier transforms of the corresponding 
functions and it has been assumed that F~ b and AF are dependent on the 
difference of  coordinates X =  x - y  because of translational invariance. As 
an  example, we assume 

ff~a~( k, 1) = exp(-k2/  21) 

and we have 

a 1 f d4pl . 4  exp{-(1/21)(p-P~+P2) 2} (27) 
v(p) = ( -~ ) s  j a p2 (7p--~l-im)(-------~p2-irn----~) 

which is convergent and gives the additional momentum dependence which 
ensures that the perturbation technique is applicable in hadron mechanics 
or in strong interactions. This was, in fact, assumed from another consider- 
ation in our earlier paper (Bandyopadhyay and De, 1975a). This situation 
will be more apparent in the next section, where we calculate formally the 
amplitude for the meson-baryon interaction. Since the hadron propagator 
has  been found, the field theory of hadrons can be formed in the usual 
way, although it is necessary to find the exact form of the F-functions, that 
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is, of the G-functions. This will be done in a future paper. Here we confine 
ourselves to the formal amplitude calculations of the two-body hadron 
processes. 

4.  A M P L I T U D E  FOR TWO-BODY HADRON REACTION 
AND DISCUSSION 

We have already constructed the one-particle hadron state, given by 
(13) and (15). The two- or more-particle states can be defined as the Cartesian 
product of two or more one-particle states. That is, a two-particle hadron 
state is 

I~'N(P')4'N(P)) ----] 0N (P')) | [q~N(P)) (28) 

and similarly the vacuum state is 

I O) = IO)p,OlO)p (29) 

a direct product of relevant one-particle vacuums. 
Now expanding qT-)~(x) and 0(-)r in terms of the complete set of 

solutions, we have for the one-particle meson state, with the usual notations, 

[ 4 ,~xl  
](I) M (p)) 

• c~2.od.*l.,a~(p2)~,(p.)O;~(x. OlO) 

If  -~b GAB(X, 1), we have GAn(k, 1) is the Fourier transform of ~b 

1 ( m2 ~ 1/2 

IO~(p)) -- ~ p~.~ \EplEp2J a,~ (p2)vl3 (px) 

- I * d* • )Cp>~ p,,olO) (30) 

Using the usual notation 

c~,~d*~,,~lO)---Ip2, ~; Pl, fl) 

we have, from (30), 

1 ( m2 '~ 1/2 
]q~M(P)) = -~ p~,~ \EmEp2 / tT= (P2)Vt~(P~) 

--ab 
• GAB(pl+P2--p;  /)lP2, a;  p,,/3) 

PlO = oJpl, P2o = wp~ (31) 
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For the nucleon one-particle state we can carry out a similar procedure to 
obtain 

1 m 5/2 

I~0N(P))- V5/2 pl,...,psE ( E p . .  Eps) 1/2 

x v,~(p~)a.2(p2)v~3(P3)a~4(P4)V,~5(p5 ) 
- - a l ' " a  5 

X Ga~...as(Pa +'" "'+P5--P, /)IP~, ~, ; ' ' ' ,  PS, ~5) (32) 

In the case of massless constituents the normalization is to be changed in 
accord with the corresponding changes for the spinors. Also, 

- - a l . . . a  - - a b  G,~,...-A,( k, I) and GAB(k, 1) 

are actually functions of (k, l) because K o = P x o + P a o + . . . + p s o - P o ,  with 
Pio = (P~+ m 2 )  1/2 and k = Pl +p2+" �9 ' +Ps -P .  

Now we insist on the following expansion: 

G~,~:.'.~5(pl + . .  . + p s -  p, l) 

Perm. of(l,2), p ' , p " , p "  
(3,4) & 5 

-- a3,a  4 __ it ~ a  5 Ill 
X G a 3 a 4 ( k 2  p ,  l ) G , % ( p s - p  , l ) G ( p ' + p " + p  . . . .  p, 1) (33) 

with 

P l  + P 2  = k l ,  p3+P4 = k2 (33a) 

In coordinate space this expansion is equivalent to the following decompo- 
sition: 

G~A::[&5(x, l )=  2 (27r)12G~,~A2(x, I)G~A3~A,(x, 1)G%(x, I) (34) 
perm.of(1,2), 

(3,4)&5 

Thus we can write the one-particle nucleon state as, using (33) and (34), 

10N(p)) 
1 m 5/2 

= V5/2 pl,~,p5 (Epl " " " Eps) 1/2 

x v~,(p~)a~(p2)v,~3(p3)a,~(p4)v~(ps) 

x Y, Y, G~A~A2(k,-p', l) 
Perm. of(l,2 ), p ' , p ' , p "  

( 3,4 ) & 5 

x G~,~,(k2-p",  l ) G ) , ( p 5 - p " ,  l ) G ( p ' + p " + p  . . . .  p, l) 

x Ip~, 0/1 ; P2, a=) |  a3,  P4, o~4)| o~,) 

= • E G ( p ' §  . . . .  p, 1)l~M,(p')'I~=(p")q':(p'")) (35) 
perm. p ' , p " , p "  
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where [0s(P")) represents the one-particle fermion state and ~p . . . .  is the 
sum over the meson states M1 and M2 whose constituents are rearranged 
from the five lepton constituents of the nucleon. 

Now let us sketch the two-body meson-baryon reaction (MB ~ MB), 
for example, ~-N-~ Np, ~N,  etc. The initial and final two-body states are 
the direct products of the two one-particle states as described earlier. Thus, 
the two-particle meason-nucleon state is 

ION(p,) )| = ItPN(p,)d~M( p2) ) 

and the reaction amplitude for the two-body meson-baryon interaction is 
given by 

(t~N(ptl)dPM(P~2)lSlON(Pl)dPM(p2)) ~ A(p~, P'2, Pl, P2) (36) 

with S = U(oo, - ~ ) ,  where U is the usual time-displacement operator. Using 
(35), we have 

A(PI ,  P2,PI,P2) = ~, ~ ~, -* , ,, ,,, , ' ' G ( p y + p f + p y  -pa ,  1) 
p e r m .  PJ-,P//,P'7 P;,P~;P"i" 

- -  t It It! • G ( p i + p i  +Pi -Pa;  I) 
! tt Itl ! ! 

• (C~M(ps)agM(ps)q~s(Ps)~M(P2)]SI~M(pi) 

• ~M(p',)q~s(p'[')C~M(P2)) (37) 

NOW S = U(oO, -co),  where U(t, to)]a, to) = [a, t), with ]a, to) and ]a, t) being 
the physical states at times to and t, respectively. Now, as the state ]a, t} is 
the state in the product space, we write 

Then 

l a, to) = [a', to) | [a", to) 

]a, t) = ]a', t)Qla", t) 
(38) 

la, 0 = U( t, to)la', to)| to) (39) 

Let U' and U" be the time displacement operators that operate on the states 
[a', t) and la", t}, respectively. Then, 

]a, t) = ]a', t)| t )= U'( t, to)]a', to)@ U"( t, to)[a", to) 

= U'(t, to)U"(t, to)]a', to)| to) (40) 

From (39) and (40)i we have 

U ( t, to)= U' ( t, to) U"( t, to) (41) 

and hence 

U(oo, -00) = U'(oo, -00) U"(oa, -00) (41a) 
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o r  

S = S . S '  
(42) 

= u ' ( ~ , - ~ ) ,  s ' =  u " ( ~ , - ~ )  

Then the amplitude can be written as 

A(p~, p;, Pl, P2) 

= Y~ ~, Y~ (3*(p}+p~+pj['-p~, 1) 
perm.  PJ',Pf, P7 P~'Pi;P"{ 

- ' " - P l ,  I )  • G ( p i + P i  +Pl" 

x {(~M(p/)O~M(p2)lSl~(p,)~M(pd)} 

x { (~(pS)Os(p ' ; ' ) ]S ' [~M(p")~s(p ' ) )}  (43) 

Here S corresponds to the S-operator, which is responsible for the ~-~- 
interaction (that is, ~r~- -> p -~ ~wr, 7to), etc.) and S' corresponds to only the 
"connector  part",  which is the rearrangement of the "spectator" (Bandy- 
opadhyay and De, 1975a) to the reaction. Note that the meson-baryon 
interaction is thus governed by the ~r~r interaction, that is, by the operator 
part S only. In our earlier papers (Bandyopadhyay and De, 1973, 1975a, b; 
De, 1983) it was conjectured that the contribution from the spectator part 
of the form: 

]l l! !l! !ll 
( I S ' I )  : r . p~ ) 8 ( p f  - p ,  ) 

In fact, in that formalism, the amplitude is 

A(p l ,  p2, p, ,p2) = E Z "~*" ' . . . .  " ' l) ' t.r kpf-vpf"t-pf - P l ,  
p . . . .  PfiV~;Py, P[  

- -  ! !t r ! x G ( p ~ + p f + p s  -p1 ,  I)K(p},p2,  pI, p2) (44) 

where 

K(p's ,p; ,Pl ,  P2) = (~M(P})~M(P'2)ISI~M(Pl)~M(P2)) (45) 

Apart from the dependence on the amplitude K of the ~r~r interaction, the 
amplitude of the meson-baryon reaction depends on the factor d r .  G, 
which provides additional momentum dependence. This momentum depen- 
dence can be compared with the form factor as well as the rearrangement 
amplitude T(s, t), an amplitude related to the rearrangement of partons 
(constituents) involved in duality diagrams that was conjectured in our 
previous model (Bandyopadhyay and De, 1973, 1975a, b; De, 1983). 

In fact, the term T(s, t) behaves like s -~v for large s, where n is the 
number of  constituents of hadrons that are rearranged and y is a parameter 
that has a correspondence with the Regge amplitude. Thus, the effective 
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coupling term in the amplitude becomes g ( s ) = g ,  s nr, and inserting this 
factor for each vertex in the perturbative expansion, it can be seen that the 
final expression can be made convergent because the higher order terms 
will not be large enough to contribute. Consequently, we do not face any 
inconsistency as in the naive form of the field theory. Also, the form factor 
F(t)  arises because we have assumed that the basic unit of the strong 
interaction is the ~r-meson, which in itself is not a fundamental particle but 
is composed of a muon-ant imuon pair, and it has been shown earlier (De, 
1977) that physically it corresponds to the electromagnetic form factor of 
the pion. Thus, the amplitude is of the form 

A ( M B  ~ MB)  = aA(errr ~ zrrr(w)) T(s, t) (46) 

where a is a numerical factor depending on the number of interacting pions 
in the structure of M and B. Note that this model is in good agreement 
(Bandyopadhyay and De, 1973, 1975a, b) with the experimental results. 
Now if we compare this amplitude with that of the present model, that is, 
with (44), we find that G*G contributes to the rearrangement term T(s~t) 
a factor that was included in an ad hoc manner in our previous model. 
Thus, the present model provides a foundation for this rearrangment term. 
Of course, it remains a problem to ascertain the form of the function G, 
which essentially depends on the nature of the field in the microdomain 
and on the "inner" amplitude function in forming the particle space. Such 
considerations will be discussed in a subsequent paper. 
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